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Quantum mechanics of lattice gas automata: One-particle plane waves and potentials
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Classical lattice gas automata effectively simulate physical processes, such as diffusion and flgid flow
certain parameter regimeslespite their simplicity at the microscale. Motivated by current interest in quantum
computation we recently definegliantumlattice gas automata; in this paper we initiate a project to analyze
which physical processes these models can effectively simulate. Studying the single particle sector of a
one-dimensional quantum lattice gas we find discrete analogs of plane waves and wave packets, and then
investigate their behavior in the presence of inhomogeneous potef8aR63-651X97)09005-3

PACS numbgs): 03.65~w, 02.70—c, 11.55.Fv, 89.86:h

I. INTRODUCTION zmann equation on a classical computer or, at present hypo-
thetically (but rapidly), by simulation on a quantum com-
The first quantum lattice gas automatg@LGA) ap-  puter.
peared as Feynman’s path integral for a relativistic particle in In fact, given the arguments that massive parallelism will
1+1 dimensiong1]; independently Riazanov constructed a optimize nanoscale quantum computer architecfidieit is
2+1 dimensional QLGA as the path integral for the nextplausible that the first usefujuantum computatiof8] will
higher dimensional Dirac equati¢@]. In these formulations implement a QLGA simulation of some quantum mechanical
the quantum particle is conceptualized as evolving alongrocess. This provides two reasons to pursue the project de-
space-time trajectories, each of which is assigned a probabiscribed in this series of papers: we want to explore not only
ity amplitude which is the product of a sequence of “scat-quantum mechanical phenomena which can be simulated ef-
tering” amplitudes describing the evolution of the particle fectively by QLGA, but also how well, as Feynman sug-
during a single time step. Thus these QLGA are discretizagested[9], a quantum computer might simulate physics. In
tions of quantum mechanical processes. addition, we expect the quantum mechanics of LGA to have
Feynman’s path integral formulation of quantum mechan-implications for discrete models of fundamental physics: we
ics reproduces the standard Safinger formulation of wave have already found remarkable consequences of unitarity in
functions obeying partial differential equatiofi$]. These linear[6,10] and nonlineaf11] QCA.
differential equations can be discretized directly, giving We begin in Sec. Il by recalling the model p8] with
equations which Succi and Benzi naturally identify in thewhich we will be working: the most general one dimensional
lattice gas paradigm as quantum lattice Boltzmann equationisomogeneous QLGA with a single particle of speed no more
[3]. It is a familiar, although not often useful, observation than 1 in lattice units. The local evolution rule for this model
that any numerical evolution of a discretized partial differen-hastwo free parameters: essentially the second measures
tial equation can be interpreted as the evolution of somehe coupling between two copies of Feynman’'s original
cellular automatoCA), if one allows the set of states to be QLGA in which the first measures the “mass” of the par-
R, or C, or Zy for some very largéN. Taking this perspec- ticle.
tive, Bialynicki-Birula constructs a model for quantum  This generalized QLGA is exactly solvable, just as is a
evolution—a linear unitary CAl4]—which is essentially single Feynman QLGA. In Sec. Il we demonstrate this by
equivalent to, although derived independently of, Succi andinding the discrete analogs of plane waves in, and the dis-
Benzi's equations. persion relation for, our QLGA. We also show the results of
The equivalence of a QLGA simulation and the evolutionsimulations of the former—on deterministiccomputer.
of a set of quantum lattice Boltzmann equations or a unitary We might imagine a one particle QLGA being simulated
CA depends on the equivalence of the path integral and stamuantum mechanicallpy a ballistic electron in a solid state
dard formulations of quantum mechanics in the continuumlattice [12] or as the “low energy” sector of a line of dy-
Our recent work explaining the necessity of nonunitarity innamical quantum spirf®] (“low energy” meaning, e.g., the
earlier attempts of Gssing and Zeilinger to construct homo- configurations with one spin up and the rest down the
geneous CA for quantum evolutioib] demonstrates this former cas¢13], and certainly if our interest is in the QLGA
equivalence directly for the discrete modgd$ We also note as a discrete approximation to the Dirac equafié} it is
that, in contrast to simulation with deterministic or probabi- natural to investigate wave packets representing a semiclas-
listic LGA, simulation with a QLGA requires evolution  sical quantum particle. We do so in Sec. IV.
along all possible space-time trajectories. This may be In Sec. V we show how to introduce an inhomogeneous
achieved(slowly) by evolution of the quantum lattice Bolt- potential into the model. Concentrating on finite square well
potentials, we determine the dependence of the frequ@nmcy
energy eigenvalues on the depth of the well and find that the
*Electronic address: dmeyer@choniji.ucsd.edu eigenfunctions take the expected form. Finally, we utilize the
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results of Sec. IV and show the results of simulations of aonly whenx=y+ 8. This is equivalent to a condition on the
wave packet in a finite square well. We summarize our reamplitudes

sults in Sec. VI and indicate the directions in which this

research is continuing. Y (t+1X)=F (Y_1(t,x+1),¢,1(t,x=1)),

where takingf, to be independent ok means that the

QLGA is homogeneouin space. As the notation suggests, it
A lattice gas automatofLGA) should be envisioned as a is convenient to combine the left and right moving ampli-

collection of particles moving synchronously from vertex totudes atx into a two component complex vectaf(t,x)

vertex on a fixed grapHattice) L: At the beginning of each := (¥ _1(t,X),¥41(t,x)) so that a state vector is written

time step, each particle is located at some vertex and is la-

beled with a “velocity” indicating along which edge inci-

dent to that vertex it will move during the “advection” half ()= Ex: Ytx)1x).

of the time step. After moving along the designated edge to

the next vertex, in the “scattering” half of the time step the we showed iff6] that the most general unitary evolution for

particles at each vertex interact according to some rule whic one dimensional QLGA with parity invariangee., invari-

assigns new “velocity” labels to each. For the purposes ofance undex— —x; also calledreflectioninvariance is uni-
this paper we will consider only one dimensional latticestarily equivalent to

L, isomorphic to the integer lattic& or some periodic quo-

tient thereof. In this case there are only two possible “ve- 0 ising

locities”: left and right. We will further restrict our atten- P(t+ 1,x)=<0 cosd ) p(t,x—1)

tion to LGA with only a single particle; for some preliminary

work on QLGA with multiple particles, sef,14,15.

A QLGA is a LGA for which the time evolution is uni-
tary. To make this precise we must first identify the Hilbert
space of the theory. For a one-particle QLGA in one dimenup to some overall phase which has no physical effect. Here
sion an orthonormal basis for the Hilbert sp&tés given by  the paramete®e R, or more precisely, tah plays a role
|x,a) (in the standard Dirac notatidi6]), wherexe L de-  something like “mass”: whenf#=0 the particle travels
notes position andre{*+1} denotes “velocity.” At each only on the lightcone; as t#increases its probability for
time the state of the QLGA is described bystate vectoiin moving more slowly does also.

H Notice that just as in deterministic LGA in one dimension,
the particle has @, valued “Lagrangian” conserved quan-
tity measuring the parity of its fiducial space coordinate. This

V()= pa(t.X)]x,a), (2.1 “spurious” conserved quantity partitions the set of particles
o in a deterministic LGA into two decoupled gadé$§] and in

the QLGA defined by Eq2.4) it partitions the set of ampli-

tudes ¢(t,x) into two independent sets according xe-t

(mod 2. This motivates consideration of the most general,

no less local model which breaks this symmetry, namely,

II. THE ONE-PARTICLE QLGA

cos O
+ i sing 0 P(t,x+1), (2.4

where theamplitudesy,(t,x) e C and the norm of¥(t), as
measured by the inner product &h is

1=x2a Va0 22 p(t+1X)=W_1h(t,x— 1) +Woih(t,x) + W 1h(t,x+1),

(2.9
The state vector evolves unitarily, i.el(t+1)=UW¥(t), )
whereU is a unitary operator oii. Since the evolution is Wherew; e M,(C) are 2<2 complex matrices. In terms of
unitary, the inner product is preserved and &) holds for ~ the basis vectorsx,a), now Eq. (2.3 holds whenx=y
all times if it holds for one; this allows the interpretation of +/8 Or =Y, i.e., the particle can have nonzero amplitude to
W(L,X),(1,X) as theprobability that the particle be in the malntaln its p_osmon. Thg conc_htlon that the global evolution,
state|x,a) at timet [16,17). As usual, therefore, the basis i.e., the matnxL}, be unitary is expressed in terms of the
state vectorsP = |x,a) correspond to “classical” states— Wi Py the equations
with probability 1 there is a single particle atwith “veloc-
ity” a—and a generic state vect(®.1) is a superposition of
these “classical” states, each of which has integer values

w_wh +wowl +w,wh =1,

(one 1, the rest)0for the number of particles at each lattice WoW11+W+1W3=0, 2.6
site. (In general, the basis vectors for thearticle subspace '
of the QLGA Hilbert space are exactly the possible states of W lwilzo,

a classical deterministic LGA with particles[15].)

In order for the evolution to have the “advection” inter- together with their Hermitian conjugatgs]. Also imposing
pretation described above, the basis vectors should evolve e condition of parityreflection invariance on evolution of
that the form(2.5), we showed irf6] that the most general solu-

tion, up to unitary equivalence and an overall phase, is given
(x,a|Uly,B)#0 (23 by
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Here pe R is a coupling parameter breaking the spurious

symmetry. Whenp=0, Eq. (2.5 reduces to Eq(2.4), the
QLGA which is unitarily equivalent to the models of Feyn-
man|[1], Succi and BenzZ3], and Bialynicki-Birula[4]. As
tarp increases, the relative weight of, increases and the
particle has greater probability of maintaining its position,
i.e., having zero velocity. This is the first indication of a
symmetry betweem and p which will become more explicit
as we investigate the general QLGA of E¢®.5 and(2.7).

Ill. PLANE WAVES

The local evolution rulg2.5) is linear so we expect the
model to be exactly solvable. [6] we solved thep=0 case
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FIG. 1. Evolution of then=1 right moving plane wave on a
periodic lattice withé= 7/3 andp= =/4.

For a given wave numbek, Eq. (3.5 determines two fre-
quencies* wy in terms of the rule parametetsand p. Call
the corresponding eigenvectors®{k) (normalized to have
length 1N) y*=1)(0)e (?, so that the corresponding plane
waves are defined by E3.1) to be

by counting space-time lattice paths in order to compute the

propagator K,(t,x;0,0):=(x,«|U'|0,8) explicitly. Lattice

paths are more difficult to count when the particle has non-

Wik =S ka(0)ehx), X

zero amplitudes for maintaining its position during each time

step. Avoiding this difficulty leads us to a more physical

approach—finding the discrete analog of plane waves in &igures 1 and 2 show the evolution € + 1 (right moving

QLGA.

Recall that the QLGA is homogeneous, id.commutes
with the translation(shift) operatorT defined by T)(x)
:=i¢(x+1). Supposé =Zy . Then the eigenvalues dfare
e'* for wave number&=27mn/N, ne{0,... N—1}, and the
corresponding eigenvectol® satisfy

Py (x+1)=e*y(x). (3.0
Since[U,T]=0 andU is unitary, the¥® are also eigen-
vectors forU with

plane waves fom=1, 2. The probability ' (t,x) ¥ (t,x)
[where ¢ (t,x): ="'(t,x)] of the particle being ax is con-
stant inx (andt), so the vertical axis in the graphs shows the
real part ofyy_4(t,x). Even on such a smalN=32) lattice
this QLGA provides a very good approximation to con-
tinuum plane waves of long wavelength measured in lattice
units.

Notice that when the wave numbkrincreases, so does
the frequencyw—the time period is shorter in Fig. 2 than in
Fig. 1. Also thephase velocityw/k decreases—the crest of
the wave moves more slowly. In fact, ER.5) is the exact

dispersion relation giving the frequency in terms of the
wave number. Figure 3 graphs the dispersion relation for the
QLGA with the same rule parameters used in the simulations
of Figs. 1 and 2. The graph has reflection symmetry about
¥oth axes since Eq3.5) is invariant under botlk— —k and
w— — . Each reflection alone changes the direction of the
plane wave. Wherk=0, w=*(6—p); whenk=*m, o

=+ (0+p— ). These values exemplify another symmetry
of the dispersion relation—invariance undgs p; this is a
symmetry in the QLGA rule space which is not realizable by

Uw =g oy, (3.2

for somefrequencieswy e R. The eigenvector® ¥ are the
discrete analogs of plane waves since they evolve simply b
phase multiplication.

Since the action ob) is defined by Eq(2.5), Egs.(3.1)
and (3.2 imply that

e~ kg (x) =w_ 1 (x— 1) +woy(x)
+w 0 (x+1)

= (e " w_s+wotew, 1) y(x)

=:D(k) ¥ (x). (3.3
Thus thee '“k are eigenvalues d(k) e M,(C), i.e., solu- Re (y_,)
tions of o
defD(k)—e “k]=0, (3.9

wherel is the 2x 2 identity matrix. Using the parametriza-
tion (2.7) of thew;, Eq. (3.4) reduces to the condition

(3.5

FIG. 2. Evolution of then=2 right moving plane wave on a

CcOsw=coK cos¥ cop +singd sinp. periodic lattice with6= /3 andp= /4.
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® \I,:; P(x)]x)
/2
o~ =3 w0 et

k

12 The pare_nthesized expression is the amplitudé@f) in the
new basis

bo(K):= K, €|x) ih(x
FIG. 3. The dispersion relation fa#=w/3 andp=m/4. /12 vk ; (kselx) 0

<|w|<5n/12. +
_ (k) (0)elky
a local unitary transformation. Figure 4 graphs the special ; (; yre(0)e |y>) [X)(x)
case of equal rule parameters; here the dispersion relation
passes through the origin. —r k01t —ikx
By comparison with plane waves in continuum quantum [y™e(0)] ; pixe
mechanicg 16,17, we know thatw andk should be inter-

preted as being proportional Energyand momentumre- ::[l!/(k,e)(o)]*r{/,(k) (3.9
spectively. Expanding the dispersion relati@5) aroundk A '
=0 andw=0 to second order, we find where ¢(k) is thediscrete Fourier transfornof (x). The

plane waveslk,e) evolve by phase multiplication so the

probabilities s (k) (k) are left invariant by the evolution.
Since any initial state vecto¥ (0) can be expressed in the
plane wave basis this way, the existence of these conserved
E2=p2c2+ m2ct. 3.8 quantities is equivalent to exact solvability for this model of

P 38 a one-particle QLGA.

w?=k? cod cop+2[1—cog6—p)]. (3.7

For a relativistic particle in the continuum,

Comparing Egs. (3.7 and (3.8) suggests that the

1-cos@—p)=0 case, i.e., th&=p case shown in Fig. 4,

corresponds to the particle beingassless The plane waveg$3.6) provide a starting point for con-
Not only do the plane wave parametessandk bear the  structing wave packets with localized position and particu-

interpretation of proportionality to the conserved quantitieSarized momentum. Consider the right moving plane wave

energy and momentum, but they also label a complete set gfith wave numbek, in the position basis

(nonloca) conserved quantities for the QLGA. Sindeis

orthogonal its eigenvectot k9 are orthogonal for distinct Plko =S ko +1(0)elko|x)

wave number&. FurthermoreP (k) is unitary, so its eigen- x '

vectors ¢(*=1)(0) are orthogonal foeach kand hence so o S S
are the plane waveg**1. Since we normalized the eigen- In this discretgand periodi¢ situation the binomial distribu-
vectors ofD(k) to have length M, the plane wave$3.6) tion is a convenient substitute for a Gaussian distribution, so

form an orthonormal basis foH which we denote by to localize the particle we multiply the amplitudes by appro-
{|k,€)}. Consider any state vectdr e H priate binomial coefficients: Let

2s
S

IV. WAVE PACKETS

-1

V= X},

4.

: S
(kg,+1) ikgx
2 o hojets (x—x0+s/2

X

w2 for evens<N, where the inverse binomial coefficient out-

side the sum is the requisite normalization factor. This wave
packet is localized around,, having support on the interval
k [xg—s/2, xo+s/2]. Figure 5 shows the evolution for wave
numberky= 7/4 and widths= 32 on the latticé/g,. The rule
parameters are the same as those used in the simulations
2 shown in Figs. 1 and 2. In contrast to those graphs, the ver-
tical axis in Fig. 5 shows the probability that the particle is in
the statgx).
This simulation shows that th&,= /4 wave packet
FIG. 4. The dispersion relation in the “massless” casep moves with well definedgroup velocityto the right. The
=7l6. |w|<2w/3. result is just what we would expect by analogy with the

~1 —n/2 /2 n
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Iwi?

FIG. 5. Evolution of theky= 7/4 wave packet4.1) with width
s=32 for rule parameter9= /3, p=m/4. The probability peak
moves fromx= 31 att=0 to x=54 att=49; thus the group veloc-
ity is approximately 23/480.47.

Iyl

FIG. 6. Evolution of theko= 7/4 wave packet4.1) with width
s=8 for rule parameter®= /3, p=m/4. This wave packet dis-
perses more rapidly than the one shown in Fig. 5: The peak prob-
ability at the end of the simulation is less than half of the initial

peak probability; left moving ripples carrying off some of the prob-

continuum situation and can be analyzed in the same way, by,

transforming to thek, ) basis. Using Eq(3.9) we compute
the amplitudes in this basis

ility are also visible.

Figure 7 shows a simulation of a wave packet built from

the plane wave with smallest nonzero wave number on the
. 25\ —1 Zga lattice: ko= 7/32. The horizontal tangent to the graph of
we(k)=[¢<kyf>(0)]T( S) >, gk 1(0) the dispersion relation &= 0, as shown in Fig. 3, indicates
X that the group velocity of this wave packet will be small.

. S . Furthermore, even with widte= 32 the wave number inter-
xelkox| n /2) e 1kx val includes the left going modes whose presence is visible
X=XoTS in Fig. 7; the consequence is an interference pattern and no
=[¢%9(0)] Ty +1(0) very well defined group velocity.
Finally, Fig. 8 shows the evolution of the same wave
2s| 7! S . packet but for the rule parametefis- w/6=p whose disper-
% E el(ko—k)x . . . . . L
( s ) ~ | Xx—Xg+ 3/2) sion relat|o_n is g_raphe_d in Fig. 4. Here the group velocity is
close to 1 in lattice units, even fdg, as small asr/32; the
2g\ 1 particle is indeed “massless.” There is almost no dispersion
=[lﬂ(k’f)(o)]Tlﬂ(ko’”)(O)( S) in this simulation; the probability contained in left going
modes is nonzero, but too small by several orders of magni-
X gl (ko= K(Xo=s2)(1 4 gl ko~k)ys tude to be visible in Fig. 8.

=[y*9(0)] Tyt 1 (0)

(23 -1
X
s

ko—k

The amplitudes(4.2) give probabilities peaked arounk
=Kkq, so this is also a wave packet in momentum space. As
usual, the group velocity is the slope of the dispersion rela-
tion (3.5), i.e.,dw/dk|k0, which is 9— 2/6/4~0.49 for the
values used in the simulation of Fig. 5; this is in good agree-
ment with the measured value of approximately 0.47.

The width of the peak in Eq4.2) depends inversely on
S: ass decreases, i.e., the width of the wave packet in posi-
tion space decreases, the width of the momentum peak in-
creases. The simulation in Fig. 6 shows the evolution of a
wave packet with widtls=8. We note that while the group
velocity is the same as in Fig. 5, there is substantially more
dispersion, indicating a greater interval of contributing wave

V. POTENTIALS

(koKX The one-particle QLGA described in Sec. Il is the most
e/(ko~ 02508 — |- (42 generahomogeneousiodel for particle speeds no more than

Iwl?

numbers. This is a general result, not depending on the spe- FiG. 7. Evolution of thek,= 7/32 wave packet4.1) with width
cific form of our wave packet; theeciprocity relationfor the  s=32: the rule parameters are stil=m/3, p= /4. This wave

discrete Fourier transform has consequences similar to thogicket disperses even more rapidly than the one shown in Fig. 6:
of the uncertainty relation for the continuous Fourier trans-eft moving waves carry off some of the probability and an inter-
form [19]. ference pattern is created.
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Iwl?

a= _

) ) ] FIG. 10. The eigenvalues of U for a square well of deptlkp
FIG. 8. Evolution of theky= 7/32 wave packe4.1) with width and width N/2 on a lattice of sizeN=32 with 9==/3 and p
s=32 for rule parameterg=w/6=p. This wave packet disperses _ 4

very little and has group velocity close to 1 in lattice units.

1. To simulate physical systenger to do useful computa- at two points except when tangent to the maximum or mini-
tion), some inhomogeneity must be introduced. In each offum of either branch of the curyeAs with any perturbation
the Eqs.(2.6), which express the unitarity condition, all the to the evolution, we expect the introduction of an inhomoge-
w; correspond to the scattering at a single lattice point, as doeity in the potential to resolve the degenerate eigenvalues.
all the w] . In the first equation these are the same latticd=igure 9 shows that this is indeed the casegasicreases
point, while in the second and third they are different. Thusaway from 0 the eigenvaluesof U increase and the degen-

if w;(X)=w,, constants independent ®f solve these equa- erate ones split.

tions, so dae™'*®w; . As observed already by FeynmEi] The eigenvalues in Fig. 9 have been computed for only
and RiazanoV2], such anx dependent phase realizes anN=8; Fig. 10 shows the results f&i=32. On the larger
inhomogeneous potential in the continuum limit of the dis-Ilattice it is clear what happens: the horizontal bands of fre-
crete path sum for the Dirac equation. Here we investigate itguency(energy eigenvalues correspond to the eigenvalues
effects on the quantum mechanics of our LGA, expectingof the unperturbed, homogeneous system, while the diagonal

them to be similar to those in the continuum limit. bands of eigenvalues correspond to the same ones, but
For simplicity, we restrict our attention to a finite square shifted by the depthp of the square well. The periodicity
well potential, i.e., along the frequency axis shown in these graphs is a symptom
, of the ambiguity in the definition of energy due to discrete
[e7w; if N/A=x<3N/4 time evolution[20]. The graphs in Figs. 9 and 10 have been
wi(X):= w, otherwise, computed for the QLGA with parameter valués /3, p

= /4, the dispersion relation for which is shown in Fig. 3.
where thew; are defined by Eq2.7). We begin by consid- Repeating the calculations for the “massless” case, with dis-
ering the effect of different values fap. persion relation shown in Fig. 4, gives the frequeriep-

Recall that the frequencfor energy eigenvaluesw are ergy ¢|genyalue plot shown in Fig. 11. The degenerate lev-
doubly degenerate except for those with the largest an§!S Still split, but much less than before for the same
smallest absolute valuéSee Fig. 3, where each horizontal values, and the part of the band structure resulting from the
line intersecting the graph of the dispersion relation does so

e

b

N

/2

JE

" 7

A\

FIG. 11. The eigenvalues of U for a square well of deptlp
FIG. 9. The eigenvalues of U for a square well of depthand  and widthN/2 on a lattice of siz&N=32 in the “massless” case
width N/2 on a lattice of sizeN=8 with §=#/3 andp= =/4. 0=ml6=0p.
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Re (y_,)

X
192 256

(=]
N,
=
©

i

FIG. 12. The three eigenfunctions bf with smallest positive
eigenvaluesr/12<0.2622<0.2634<0.2653, for a square well of
depth /24 and widthN/2 on a lattice of sizeN=256 with
=3 andp= /4.

.. . . . . FIG. 14. Evolution of thé&,= 7/4 wave packet4.1) with width
nonzero minimum positive frequency in the massive disperg_ 35 for rule parameterg= /3, p= /4 in a square well of depth

sion relation _vanishes._ _ ¢= /6. There is very little reflection as the wave packet passes the
Now consider the eigenvectors bf, namely, the eigen- yight wall of the square well at=3N/4=48.

functions for our discrete version of a finite square well.
SinceU is no longer translation invariant we do not have an
equation like Eq(3.3) to solve for the eigenfunctions ana- ;
lytically. Rather than developing a cross boundary matching€flection.

method as is used in the continuum problem for a periodic _Increasing the depth of the square well should have the
square well potentid21], here we simply find the eigenvec- effect of increasing the amount of internal reflection of the
tors of U numerically. Figure 12 shows the eigenfunctionsWave packet. Simulations demonstrate that this is indeed the
corresponding to the three smallest positive eigenvalues fatase. When the depth of the square welpis 7/4, Fig. 15

the QLGA with §= /3 andp= w/4. The depth of the square Sshows that the wave packet splits as it scatters off the right
well is ¢= 7/24. We see exactly the lowest modes we wouldwall of the square well. With greater probability the particle
expect from our experience with such a potential in the conis reflected back into the well, but it also has a substantial
tinuum. As the energy of the eigenfunction increases there iprobability of continuing to the right. The wave packet
greater probability that the particle is outside the well—inwhich continues to the right does so at a reduced group ve-
the region of higher potential. Figure 13 shows an eigenfunctocity as we can see by the fact that the reflected wave packet
tion which is approximately a plane wave in both regions: ittravels back across the well, reaching the left wallxat
has larger wave number in the well than outside it. For ana=N/4=16 at the end of the simulation shown, before the
lytic results on the closely related problem of a step potentransmitted wave packet travels the same distance right-
tial, and some discussion of their consequences for the physjyards.

cal interpretation of QLGA, segl5].

Finally, suppose we prepare one of the semiclassical wav
packets studied in Sec. IV in a finite square well. Using th
dispersion relation3.5), we find that theky= /4, width
s=32 wave packet4.l) of Fig. 5 has peak frequency,
=cos [(1+/6)/4] for rule parameters¥=x/3, p= /4.
wq is just a little larger thanr/6 so we would not expect a
square well of depthp=#/6 to contain this wave packet.
Figure 14 shows a simulation of this situation on a lattice of
sizeN=64: the wave packet continues past the right edge of

the square well at[¥/4 with only a small amount of internal

Finally, when the depth of the square well is increased to
$= /3, Fig. 16 shows that almost the entire wave packet is
eflected back into the well by the right wall. In this case

there is only a very small probability that the particle has
sufficiently large energy to escape the well.

Re(y_;)

[yt

FIG. 13. An eigenfunction for a particle with eigenvalue FIG. 15. Evolution of the same wave packet with the same rule
0.3985<57/12 large enough not to be confined completely to theparameters as in Fig. 14, but now in a square well of depth
square well of the previous figure. Outside the square well the wave= /4. There is both reflection and transmission as the wave packet
number decreases and the probability increases. scatters off the right wall of the square well.
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limit the QLGA reproduces the quantum mechanical phe-
nomena of plane waves and wave packets obeying a disper-
sion relation(3.5). Furthermore, the model straightforwardly
accommodates the inclusion of inhomogeneous potentials.
The eigenvectors of the evolution matrix give the quantum
mechanical eigenfunctions for the lattice gas particle, and
simulations exhibit the semiclassical evolution of a wave
packet, in the presence of a square well potential.

Taking a QLGA seriously as a possible model for quan-
tum computation by, for example, ballistic electrons in a
lattice of solid state nanostructures, raises many additional
questions, some of which will be addressed in subsequent
papers in this series: Inhomogeneity of the substrate can be
incorporated in the model by varying the rule parameters

FIG. 16. Evolution of the same wave packet with the same rul¢Vhilé _maintaining global unitarity. Finite, nonperiodic,

parameters as in Figs. 14 and 15, but now in a square well of deptoundary conditions can be imposed similarBg]. Higher

$= /3. This well is deep enough that the wave packet is almosglimensional[2,4,10,14 and multiparticle[6,14,17 models

entirely reflected by the right wall of the square well. can also be constructed. Decoherence is the crucial problem
for quantum computer§8], particularly in the solid state
[23]. QLGA provide an extremely convenient arena in which
to model this problem{24]. Finally, the question of for
which quantum computational tasks QLGA are best suited

VI. DISCUSSION deserves serious investigation.

Il

Unitarity is a very restrictive constraint on the local scat-
tering rule for a QLGA with a single particle of bounded
speed. When the bound is 1 in lattice units, there is a two
parameter family of reflection invariant one dimensional lo- It is a pleasure to thank Peter Doyle, Mike Freedman,
cal rules, given by Eqg2.5) and(2.7). It is already remark- Peter Monta, and Richard Stong for discussions on various
able that the Dirac equation arises as a continuum limit ohspects of this project. | also benefited from conversations
this QLGA whenp=0. In this paper we have begun to in- with Herbert Bernstein, Thomas Beth, i#aTorma and
vestigate the quantum mechanics of the general two parantarald Weinfurter at the fourth Workshop on Quantum
eter rule. We find thaeven without going to a continuum Computation sponsored by the 1SI Foundation.
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