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Quantum mechanics of lattice gas automata: One-particle plane waves and potentials
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~Received 24 July 1996!

Classical lattice gas automata effectively simulate physical processes, such as diffusion and fluid flow~in
certain parameter regimes!, despite their simplicity at the microscale. Motivated by current interest in quantum
computation we recently definedquantumlattice gas automata; in this paper we initiate a project to analyze
which physical processes these models can effectively simulate. Studying the single particle sector of a
one-dimensional quantum lattice gas we find discrete analogs of plane waves and wave packets, and then
investigate their behavior in the presence of inhomogeneous potentials.@S1063-651X~97!09005-3#

PACS number~s!: 03.65.2w, 02.70.2c, 11.55.Fv, 89.80.1h
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I. INTRODUCTION

The first quantum lattice gas automaton~QLGA! ap-
peared as Feynman’s path integral for a relativistic particle
111 dimensions@1#; independently Riazanov constructed
211 dimensional QLGA as the path integral for the ne
higher dimensional Dirac equation@2#. In these formulations
the quantum particle is conceptualized as evolving alo
space-time trajectories, each of which is assigned a prob
ity amplitude which is the product of a sequence of ‘‘sc
tering’’ amplitudes describing the evolution of the partic
during a single time step. Thus these QLGA are discret
tions of quantum mechanical processes.

Feynman’s path integral formulation of quantum mech
ics reproduces the standard Schro¨dinger formulation of wave
functions obeying partial differential equations@1#. These
differential equations can be discretized directly, givi
equations which Succi and Benzi naturally identify in t
lattice gas paradigm as quantum lattice Boltzmann equat
@3#. It is a familiar, although not often useful, observatio
that any numerical evolution of a discretized partial differe
tial equation can be interpreted as the evolution of so
cellular automaton~CA!, if one allows the set of states to b
R, or C, or ZN for some very largeN. Taking this perspec-
tive, Bialynicki-Birula constructs a model for quantu
evolution—a linear unitary CA@4#—which is essentially
equivalent to, although derived independently of, Succi a
Benzi’s equations.

The equivalence of a QLGA simulation and the evoluti
of a set of quantum lattice Boltzmann equations or a unit
CA depends on the equivalence of the path integral and s
dard formulations of quantum mechanics in the continuu
Our recent work explaining the necessity of nonunitarity
earlier attempts of Gro¨ssing and Zeilinger to construct homo
geneous CA for quantum evolution@5# demonstrates this
equivalence directly for the discrete models@6#. We also note
that, in contrast to simulation with deterministic or proba
listic LGA, simulation with a QLGA requires evolution
along all possible space-time trajectories. This may
achieved~slowly! by evolution of the quantum lattice Bolt
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zmann equation on a classical computer or, at present h
thetically ~but rapidly!, by simulation on a quantum com
puter.

In fact, given the arguments that massive parallelism w
optimize nanoscale quantum computer architecture@7#, it is
plausible that the first usefulquantum computation@8# will
implement a QLGA simulation of some quantum mechani
process. This provides two reasons to pursue the projec
scribed in this series of papers: we want to explore not o
quantum mechanical phenomena which can be simulated
fectively by QLGA, but also how well, as Feynman su
gested@9#, a quantum computer might simulate physics.
addition, we expect the quantum mechanics of LGA to ha
implications for discrete models of fundamental physics:
have already found remarkable consequences of unitarit
linear @6,10# and nonlinear@11# QCA.

We begin in Sec. II by recalling the model of@6# with
which we will be working: the most general one dimension
homogeneous QLGA with a single particle of speed no m
than 1 in lattice units. The local evolution rule for this mod
has two free parameters: essentially the second meas
the coupling between two copies of Feynman’s origin
QLGA in which the first measures the ‘‘mass’’ of the pa
ticle.

This generalized QLGA is exactly solvable, just as is
single Feynman QLGA. In Sec. III we demonstrate this
finding the discrete analogs of plane waves in, and the
persion relation for, our QLGA. We also show the results
simulations of the former—on adeterministiccomputer.

We might imagine a one particle QLGA being simulat
quantum mechanicallyby a ballistic electron in a solid stat
lattice @12# or as the ‘‘low energy’’ sector of a line of dy
namical quantum spins@9# ~‘‘low energy’’ meaning, e.g., the
configurations with one spin up and the rest down!. In the
former case@13#, and certainly if our interest is in the QLGA
as a discrete approximation to the Dirac equation@6#, it is
natural to investigate wave packets representing a semic
sical quantum particle. We do so in Sec. IV.

In Sec. V we show how to introduce an inhomogeneo
potential into the model. Concentrating on finite square w
potentials, we determine the dependence of the frequenc~or
energy! eigenvalues on the depth of the well and find that
eigenfunctions take the expected form. Finally, we utilize
5261 © 1997 The American Physical Society
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5262 55DAVID A. MEYER
results of Sec. IV and show the results of simulations o
wave packet in a finite square well. We summarize our
sults in Sec. VI and indicate the directions in which th
research is continuing.

II. THE ONE-PARTICLE QLGA

A lattice gas automaton~LGA! should be envisioned as
collection of particles moving synchronously from vertex
vertex on a fixed graph~lattice! L: At the beginning of each
time step, each particle is located at some vertex and is
beled with a ‘‘velocity’’ indicating along which edge inci
dent to that vertex it will move during the ‘‘advection’’ ha
of the time step. After moving along the designated edge
the next vertex, in the ‘‘scattering’’ half of the time step th
particles at each vertex interact according to some rule wh
assigns new ‘‘velocity’’ labels to each. For the purposes
this paper we will consider only one dimensional lattic
L, isomorphic to the integer latticeZ, or some periodic quo-
tient thereof. In this case there are only two possible ‘‘v
locities’’: left and right. We will further restrict our atten
tion to LGA with only a single particle; for some preliminar
work on QLGA with multiple particles, see@6,14,15#.

A QLGA is a LGA for which the time evolution is uni-
tary. To make this precise we must first identify the Hilbe
space of the theory. For a one-particle QLGA in one dim
sion an orthonormal basis for the Hilbert spaceH is given by
ux,a& ~in the standard Dirac notation@16#!, wherexPL de-
notes position andaP$61% denotes ‘‘velocity.’’ At each
time the state of the QLGA is described by astate vectorin
H

C~ t !5(
x,a

ca~ t,x!ux,a&, ~2.1!

where theamplitudesca(t,x)PC and the norm ofC(t), as
measured by the inner product onH, is

15(
x,a

ca~ t,x!ca~ t,x!. ~2.2!

The state vector evolves unitarily, i.e.,C(t11)5UC(t),
whereU is a unitary operator onH. Since the evolution is
unitary, the inner product is preserved and Eq.~2.2! holds for
all times if it holds for one; this allows the interpretation
ca(t,x)ca(t,x) as theprobability that the particle be in the
stateux,a& at time t @16,17#. As usual, therefore, the bas
state vectorsC5ux,a& correspond to ‘‘classical’’ states—
with probability 1 there is a single particle atx with ‘‘veloc-
ity’’ a—and a generic state vector~2.1! is a superposition of
these ‘‘classical’’ states, each of which has integer val
~one 1, the rest 0! for the number of particles at each lattic
site.~In general, the basis vectors for then particle subspace
of the QLGA Hilbert space are exactly the possible states
a classical deterministic LGA withn particles@15#.!

In order for the evolution to have the ‘‘advection’’ inte
pretation described above, the basis vectors should evolv
that

^x,auUuy,b&Þ0 ~2.3!
a
-

a-

to

h
f

-

t
-

s

f

so

onlywhenx5y1b. This is equivalent to a condition on th
amplitudes

ca~ t11,x!5 f a„c21~ t,x11!,c11~ t,x21!…,

where taking f a to be independent ofx means that the
QLGA is homogeneousin space. As the notation suggests,
is convenient to combine the left and right moving amp
tudes atx into a two component complex vectorc(t,x)
:5„c21(t,x),c11(t,x)… so that a state vector is written

C~ t !5(
x

c~ t,x!ux&.

We showed in@6# that the most general unitary evolution fo
a one dimensional QLGA with parity invariance~i.e., invari-
ance underx→2x; also calledreflectioninvariance! is uni-
tarily equivalent to

c~ t11,x!5S 00 i sinu
cosu Dc~ t,x21!

1S cosui sinu
0
0Dc~ t,x11!, ~2.4!

up to some overall phase which has no physical effect. H
the parameteruPR, or more precisely, tanu, plays a role
something like ‘‘mass’’: whenu50 the particle travels
only on the lightcone; as tanu increases its probability for
moving more slowly does also.

Notice that just as in deterministic LGA in one dimensio
the particle has aZ2 valued ‘‘Lagrangian’’ conserved quan
tity measuring the parity of its fiducial space coordinate. T
‘‘spurious’’ conserved quantity partitions the set of particl
in a deterministic LGA into two decoupled gases@18# and in
the QLGA defined by Eq.~2.4! it partitions the set of ampli-
tudesc(t,x) into two independent sets according tox1t
~mod 2!. This motivates consideration of the most gener
no less local model which breaks this symmetry, namely

c~ t11,x!5w21c~ t,x21!1w0c~ t,x!1w11c~ t,x11!,
~2.5!

wherewiPM2(C) are 232 complex matrices. In terms o
the basis vectorsux,a&, now Eq. ~2.3! holds whenx5y
1b or x5y, i.e., the particle can have nonzero amplitude
maintain its position. The condition that the global evolutio
i.e., the matrixU, be unitary is expressed in terms of th
wi by the equations

w21w21
† 1w0w0

†1w11w11
† 5I ,

w0w21
† 1w11w0

†50,
~2.6!

w11w21
† 50,

together with their Hermitian conjugates@6#. Also imposing
the condition of parity~reflection! invariance on evolution of
the form~2.5!, we showed in@6# that the most general solu
tion, up to unitary equivalence and an overall phase, is gi
by
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55 5263QUANTUM MECHANICS OF LATTICE GAS AUTOMATA: . . .
w215cosrS 00 i sinu
cosu D , w115cosrS cosui sinu

0
0D

w05sinrS sinu
2 i cosu

2 i cosu
sinu D . ~2.7!

Here rPR is a coupling parameter breaking the spurio
symmetry. Whenr50, Eq. ~2.5! reduces to Eq.~2.4!, the
QLGA which is unitarily equivalent to the models of Fey
man @1#, Succi and Benzi@3#, and Bialynicki-Birula@4#. As
tanr increases, the relative weight ofw0 increases and the
particle has greater probability of maintaining its positio
i.e., having zero velocity. This is the first indication of
symmetry betweenu andr which will become more explicit
as we investigate the general QLGA of Eqs.~2.5! and~2.7!.

III. PLANE WAVES

The local evolution rule~2.5! is linear so we expect the
model to be exactly solvable. In@6# we solved ther50 case
by counting space-time lattice paths in order to compute
propagator Kab(t,x;0,0):5^x,auUtu0,b& explicitly. Lattice
paths are more difficult to count when the particle has n
zero amplitudes for maintaining its position during each ti
step. Avoiding this difficulty leads us to a more physic
approach—finding the discrete analog of plane waves i
QLGA.

Recall that the QLGA is homogeneous, i.e.,U commutes
with the translation~shift! operatorT defined by (Tc)(x)
:5c(x11). SupposeL5ZN . Then the eigenvalues ofT are
eik for wave numbersk52pn/N, nP$0,...,N21%, and the
corresponding eigenvectorsC (k) satisfy

c~k!~x11!5eikc~k!~x!. ~3.1!

Since @U,T#50 andU is unitary, theC (k) are also eigen-
vectors forU with

UC~k!5e2 ivkC~k!, ~3.2!

for somefrequenciesvkPR. The eigenvectorsC (k) are the
discrete analogs of plane waves since they evolve simply
phase multiplication.

Since the action ofU is defined by Eq.~2.5!, Eqs.~3.1!
and ~3.2! imply that

e2 ivkc~k!~x!5w21c
~k!~x21!1w0c

~k!~x!

1w11c
~k!~x11!

5~e2 ikw211w01eikw11!c
~k!~x!

5:D~k!c~k!~x!. ~3.3!

Thus thee2 ivk are eigenvalues ofD(k)PM2(C), i.e., solu-
tions of

det@D~k!2e2 ivkI #50, ~3.4!

whereI is the 232 identity matrix. Using the parametriza
tion ~2.7! of thewi , Eq. ~3.4! reduces to the condition

cosv5cosk cosu cosr1sinu sinr. ~3.5!
s

,

e

-
e
l
a

y

For a given wave numberk, Eq. ~3.5! determines two fre-
quencies6vk in terms of the rule parametersu andr. Call
the corresponding eigenvectors ofD(k) ~normalized to have
length 1/N! c (k,61)(0)PC2, so that the corresponding plan
waves are defined by Eq.~3.1! to be

C~k,e!:5(
x

c~k,e!~0!eikxux&. ~3.6!

Figures 1 and 2 show the evolution ofe511 ~right moving!
plane waves forn51, 2. The probabilityc†(t,x)c(t,x)
@wherec†(t,x):5 tc(t,x)# of the particle being atx is con-
stant inx ~andt!, so the vertical axis in the graphs shows t
real part ofc21(t,x). Even on such a small (N532) lattice
this QLGA provides a very good approximation to co
tinuum plane waves of long wavelength measured in lat
units.

Notice that when the wave numberk increases, so doe
the frequencyv—the time period is shorter in Fig. 2 than i
Fig. 1. Also thephase velocityv/k decreases—the crest o
the wave moves more slowly. In fact, Eq.~3.5! is the exact
dispersion relation, giving the frequency in terms of the
wave number. Figure 3 graphs the dispersion relation for
QLGA with the same rule parameters used in the simulati
of Figs. 1 and 2. The graph has reflection symmetry ab
both axes since Eq.~3.5! is invariant under bothk→2k and
v→2v. Each reflection alone changes the direction of
plane wave. Whenk50, v56(u2r); when k56p, v
56(u1r2p). These values exemplify another symmet
of the dispersion relation—invariance underu↔r; this is a
symmetry in the QLGA rule space which is not realizable

FIG. 1. Evolution of then51 right moving plane wave on a
periodic lattice withu5p/3 andr5p/4.

FIG. 2. Evolution of then52 right moving plane wave on a
periodic lattice withu5p/3 andr5p/4.
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5264 55DAVID A. MEYER
a local unitary transformation. Figure 4 graphs the spec
case of equal rule parameters; here the dispersion rela
passes through the origin.

By comparison with plane waves in continuum quantu
mechanics@16,17#, we know thatv and k should be inter-
preted as being proportional toenergyandmomentum, re-
spectively. Expanding the dispersion relation~3.5! aroundk
50 andv50 to second order, we find

v25k2 cosu cosr12@12cos~u2r!#. ~3.7!

For a relativistic particle in the continuum,

E25p2c21m2c4. ~3.8!

Comparing Eqs. ~3.7! and ~3.8! suggests that the
12cos(u2r)50 case, i.e., theu5r case shown in Fig. 4
corresponds to the particle beingmassless.

Not only do the plane wave parametersv andk bear the
interpretation of proportionality to the conserved quantit
energy and momentum, but they also label a complete se
~nonlocal! conserved quantities for the QLGA. SinceT is
orthogonal its eigenvectorsC (k,e) are orthogonal for distinc
wave numbersk. Furthermore,D(k) is unitary, so its eigen-
vectorsc (k,61)(0) are orthogonal foreach kand hence so
are the plane wavesC (k,61). Since we normalized the eigen
vectors ofD(k) to have length 1/N, the plane waves~3.6!
form an orthonormal basis forH which we denote by
$uk,e&%. Consider any state vectorCPH

FIG. 3. The dispersion relation foru5p/3 andr5p/4. p/12
<uvu<5p/12.

FIG. 4. The dispersion relation in the ‘‘massless’’ caseu5r
5p/6. uvu<2p/3.
l
on

s
of

C5(
x

c~x!ux&

5(
x

c~x!(
k,e

uk,e&^k,eux&

5(
k,e

S (
x

^k,eux&c~x! D uk,e&.

The parenthesized expression is the amplitude ofuk,e& in the
new basis

ĉe~k!:5(
x

^k,eux&c~x!

5(
x

S (
y

c~k,e!~0!eikyuy& D †ux&c~x!

5@c~k,e!~0!#†(
x

c~x!e2 ikx

5:@c~k,e!~0!#†ĉ~k!, ~3.9!

whereĉ(k) is thediscrete Fourier transformof c(x). The
plane wavesuk,e& evolve by phase multiplication so th

probabilitiesĉe(k)ĉe(k) are left invariant by the evolution
Since any initial state vectorC(0) can be expressed in th
plane wave basis this way, the existence of these conse
quantities is equivalent to exact solvability for this model
a one-particle QLGA.

IV. WAVE PACKETS

The plane waves~3.6! provide a starting point for con
structing wave packets with localized position and partic
larized momentum. Consider the right moving plane wa
with wave numberk0 in the position basis

C~k0 ,11!5(
x

c~k0 ,11!~0!eik0xux&.

In this discrete~and periodic! situation the binomial distribu-
tion is a convenient substitute for a Gaussian distribution
to localize the particle we multiply the amplitudes by appr
priate binomial coefficients: Let

C:5S 2ss D 21

(
x

c~k0 ,11!~0!eik0xS s
x2x01s/2D ux&,

~4.1!

for evens<N, where the inverse binomial coefficient ou
side the sum is the requisite normalization factor. This wa
packet is localized aroundx0 , having support on the interva
@x02s/2, x01s/2#. Figure 5 shows the evolution for wav
numberk05p/4 and widths532 on the latticeZ64. The rule
parameters are the same as those used in the simula
shown in Figs. 1 and 2. In contrast to those graphs, the
tical axis in Fig. 5 shows the probability that the particle is
the stateux&.

This simulation shows that thek05p/4 wave packet
moves with well definedgroup velocity to the right. The
result is just what we would expect by analogy with t
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continuum situation and can be analyzed in the same way
transforming to theuk,e& basis. Using Eq.~3.9! we compute
the amplitudes in this basis

ĉe~k!5@c~k,e!~0!#†S 2ss D 21

(
x

c~k0 ,11!~0!

3eik0xS s
x2x01s/2De2 ikx

5@c~k,e!~0!#†c~k0 ,11!~0!

3S 2ss D 21

(
x

S s
x2x01s/2Dei ~k02k!x

5@c~k,e!~0!#†c~k0 ,11!~0!S 2ss D 21

3ei ~k02k!~x02s/2!~11ei ~k02k!!s

5@c~k,e!~0!#†c~k0 ,11!~0!

3S 2ss D 21

ei ~k02k!x02scos2S k02k

2 D . ~4.2!

The amplitudes~4.2! give probabilities peaked aroundk
5k0 , so this is also a wave packet in momentum space.
usual, the group velocity is the slope of the dispersion re
tion ~3.5!, i.e.,dv/dkuk0, which isA922A6/4'0.49 for the
values used in the simulation of Fig. 5; this is in good agr
ment with the measured value of approximately 0.47.

The width of the peak in Eq.~4.2! depends inversely on
s: ass decreases, i.e., the width of the wave packet in po
tion space decreases, the width of the momentum peak
creases. The simulation in Fig. 6 shows the evolution o
wave packet with widths58. We note that while the group
velocity is the same as in Fig. 5, there is substantially m
dispersion, indicating a greater interval of contributing wa
numbers. This is a general result, not depending on the
cific form of our wave packet; thereciprocity relationfor the
discrete Fourier transform has consequences similar to t
of the uncertainty relation for the continuous Fourier tra
form @19#.

FIG. 5. Evolution of thek05p/4 wave packet~4.1! with width
s532 for rule parametersu5p/3, r5p/4. The probability peak
moves fromx531 att50 to x554 att549; thus the group veloc
ity is approximately 23/49'0.47.
by

s
-

-

i-
in-
a

e
e
e-
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Figure 7 shows a simulation of a wave packet built fro
the plane wave with smallest nonzero wave number on
Z64 lattice:k05p/32. The horizontal tangent to the graph
the dispersion relation atk50, as shown in Fig. 3, indicate
that the group velocity of this wave packet will be sma
Furthermore, even with widths532 the wave number inter
val includes the left going modes whose presence is vis
in Fig. 7; the consequence is an interference pattern and
very well defined group velocity.

Finally, Fig. 8 shows the evolution of the same wa
packet but for the rule parametersu5p/65r whose disper-
sion relation is graphed in Fig. 4. Here the group velocity
close to 1 in lattice units, even fork0 as small asp/32; the
particle is indeed ‘‘massless.’’ There is almost no dispers
in this simulation; the probability contained in left goin
modes is nonzero, but too small by several orders of ma
tude to be visible in Fig. 8.

V. POTENTIALS

The one-particle QLGA described in Sec. II is the mo
generalhomogeneousmodel for particle speeds no more tha

FIG. 6. Evolution of thek05p/4 wave packet~4.1! with width
s58 for rule parametersu5p/3, r5p/4. This wave packet dis-
perses more rapidly than the one shown in Fig. 5: The peak p
ability at the end of the simulation is less than half of the init
peak probability; left moving ripples carrying off some of the pro
ability are also visible.

FIG. 7. Evolution of thek05p/32 wave packet~4.1! with width
s532; the rule parameters are stillu5p/3, r5p/4. This wave
packet disperses even more rapidly than the one shown in Fig
left moving waves carry off some of the probability and an inte
ference pattern is created.
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5266 55DAVID A. MEYER
1. To simulate physical systems~or to do useful computa
tion!, some inhomogeneity must be introduced. In each
the Eqs.~2.6!, which express the unitarity condition, all th
wi correspond to the scattering at a single lattice point, as
all the wi

† . In the first equation these are the same latt
point, while in the second and third they are different. Th
if wi(x)5wi , constants independent ofx, solve these equa
tions, so doe2 if(x)wi . As observed already by Feynman@1#
and Riazanov@2#, such anx dependent phase realizes
inhomogeneous potential in the continuum limit of the d
crete path sum for the Dirac equation. Here we investigate
effects on the quantum mechanics of our LGA, expect
them to be similar to those in the continuum limit.

For simplicity, we restrict our attention to a finite squa
well potential, i.e.,

wi~x!:5H e2 ifwi if N/4<x,3N/4

wi otherwise,

where thewi are defined by Eq.~2.7!. We begin by consid-
ering the effect of different values forf.

Recall that the frequency~or energy! eigenvaluesv are
doubly degenerate except for those with the largest
smallest absolute value.~See Fig. 3, where each horizont
line intersecting the graph of the dispersion relation does

FIG. 8. Evolution of thek05p/32 wave packet~4.1! with width
s532 for rule parametersu5p/65r. This wave packet disperse
very little and has group velocity close to 1 in lattice units.

FIG. 9. The eigenvaluesv of U for a square well of depthf and
width N/2 on a lattice of sizeN58 with u5p/3 andr5p/4.
f

o
e
s

-
ts
g

d

o

at two points except when tangent to the maximum or m
mum of either branch of the curve.! As with any perturbation
to the evolution, we expect the introduction of an inhomog
neity in the potential to resolve the degenerate eigenval
Figure 9 shows that this is indeed the case: asf increases
away from 0 the eigenvaluesv of U increase and the degen
erate ones split.

The eigenvalues in Fig. 9 have been computed for o
N58; Fig. 10 shows the results forN532. On the larger
lattice it is clear what happens: the horizontal bands of f
quency~energy! eigenvalues correspond to the eigenvalu
of the unperturbed, homogeneous system, while the diag
bands of eigenvalues correspond to the same ones,
shifted by the depthf of the square well. The periodicity
along the frequency axis shown in these graphs is a symp
of the ambiguity in the definition of energy due to discre
time evolution@20#. The graphs in Figs. 9 and 10 have be
computed for the QLGA with parameter valuesu5p/3, r
5p/4, the dispersion relation for which is shown in Fig.
Repeating the calculations for the ‘‘massless’’ case, with d
persion relation shown in Fig. 4, gives the frequency~en-
ergy! eigenvalue plot shown in Fig. 11. The degenerate l
els still split, but much less than before for the samef
values, and the part of the band structure resulting from

FIG. 10. The eigenvaluesv of U for a square well of depthf
and width N/2 on a lattice of sizeN532 with u5p/3 and r
5p/4.

FIG. 11. The eigenvaluesv of U for a square well of depthf
and widthN/2 on a lattice of sizeN532 in the ‘‘massless’’ case
u5p/65r.
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nonzero minimum positive frequency in the massive disp
sion relation vanishes.

Now consider the eigenvectors ofU, namely, the eigen-
functions for our discrete version of a finite square we
SinceU is no longer translation invariant we do not have
equation like Eq.~3.3! to solve for the eigenfunctions ana
lytically. Rather than developing a cross boundary match
method as is used in the continuum problem for a perio
square well potential@21#, here we simply find the eigenvec
tors of U numerically. Figure 12 shows the eigenfunctio
corresponding to the three smallest positive eigenvalues
the QLGA withu5p/3 andr5p/4. The depth of the squar
well isf5p/24. We see exactly the lowest modes we wou
expect from our experience with such a potential in the c
tinuum. As the energy of the eigenfunction increases ther
greater probability that the particle is outside the well—
the region of higher potential. Figure 13 shows an eigenfu
tion which is approximately a plane wave in both regions
has larger wave number in the well than outside it. For a
lytic results on the closely related problem of a step pot
tial, and some discussion of their consequences for the ph
cal interpretation of QLGA, see@15#.

Finally, suppose we prepare one of the semiclassical w
packets studied in Sec. IV in a finite square well. Using
dispersion relation~3.5!, we find that thek05p/4, width
s532 wave packet~4.1! of Fig. 5 has peak frequencyv0

5cos21@(11A6)/4# for rule parametersu5p/3, r5p/4.
v0 is just a little larger thanp/6 so we would not expect a
square well of depthf5p/6 to contain this wave packe
Figure 14 shows a simulation of this situation on a lattice
sizeN564: the wave packet continues past the right edge

FIG. 12. The three eigenfunctions ofU with smallest positive
eigenvalues:p/12,0.2622,0.2634,0.2653, for a square well o
depth p/24 and widthN/2 on a lattice of sizeN5256 with u
5p/3 andr5p/4.

FIG. 13. An eigenfunction for a particle with eigenvalu
0.3985,5p/12 large enough not to be confined completely to
square well of the previous figure. Outside the square well the w
number decreases and the probability increases.
r-
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the square well at 3N/4 with only a small amount of interna
reflection.

Increasing the depth of the square well should have
effect of increasing the amount of internal reflection of t
wave packet. Simulations demonstrate that this is indeed
case. When the depth of the square well isf5p/4, Fig. 15
shows that the wave packet splits as it scatters off the r
wall of the square well. With greater probability the partic
is reflected back into the well, but it also has a substan
probability of continuing to the right. The wave pack
which continues to the right does so at a reduced group
locity as we can see by the fact that the reflected wave pa
travels back across the well, reaching the left wall atx
5N/4516 at the end of the simulation shown, before t
transmitted wave packet travels the same distance ri
wards.

Finally, when the depth of the square well is increased
f5p/3, Fig. 16 shows that almost the entire wave packe
reflected back into the well by the right wall. In this ca
there is only a very small probability that the particle h
sufficiently large energy to escape the well.

e

FIG. 14. Evolution of thek05p/4 wave packet~4.1! with width
s532 for rule parametersu5p/3, r5p/4 in a square well of depth
f5p/6. There is very little reflection as the wave packet passes
right wall of the square well atx53N/4548.

FIG. 15. Evolution of the same wave packet with the same r
parameters as in Fig. 14, but now in a square well of depthf
5p/4. There is both reflection and transmission as the wave pa
scatters off the right wall of the square well.
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VI. DISCUSSION

Unitarity is a very restrictive constraint on the local sc
tering rule for a QLGA with a single particle of bounde
speed. When the bound is 1 in lattice units, there is a
parameter family of reflection invariant one dimensional
cal rules, given by Eqs.~2.5! and~2.7!. It is already remark-
able that the Dirac equation arises as a continuum limi
this QLGA whenr50. In this paper we have begun to in
vestigate the quantum mechanics of the general two par
eter rule. We find thateven without going to a continuum

FIG. 16. Evolution of the same wave packet with the same r
parameters as in Figs. 14 and 15, but now in a square well of d
f5p/3. This well is deep enough that the wave packet is alm
entirely reflected by the right wall of the square well.
A

Fe

9;
-

o
-

f

m-

limit the QLGA reproduces the quantum mechanical p
nomena of plane waves and wave packets obeying a dis
sion relation~3.5!. Furthermore, the model straightforward
accommodates the inclusion of inhomogeneous potent
The eigenvectors of the evolution matrix give the quant
mechanical eigenfunctions for the lattice gas particle, a
simulations exhibit the semiclassical evolution of a wa
packet, in the presence of a square well potential.

Taking a QLGA seriously as a possible model for qua
tum computation by, for example, ballistic electrons in
lattice of solid state nanostructures, raises many additio
questions, some of which will be addressed in subsequ
papers in this series: Inhomogeneity of the substrate ca
incorporated in the model by varying the rule paramet
while maintaining global unitarity. Finite, nonperiodic
boundary conditions can be imposed similarly@22#. Higher
dimensional@2,4,10,14# and multiparticle@6,14,17# models
can also be constructed. Decoherence is the crucial prob
for quantum computers@8#, particularly in the solid state
@23#. QLGA provide an extremely convenient arena in whi
to model this problem@24#. Finally, the question of for
which quantum computational tasks QLGA are best sui
deserves serious investigation.
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